您所在的位置:首页 » 浙江2026传染病系统APP 服务为先 上海利翔科技发展供应

浙江2026传染病系统APP 服务为先 上海利翔科技发展供应

上传时间:2025-09-02 浏览次数:
文章摘要:1病例管理病例编号、姓名、性别、年龄、联系方式、疾病名称、症状、就诊时间、医生姓名、医院名称、***进展等2病原体监测病原体名称、监测时间、监测地点、监测结果、检测方法、样本类型等3预警预报预警类型、预警、级、预警信息、发生时间、

1病例管理病例编号、姓名、性别、年龄、联系方式、疾病名称、症状、就诊时间、医生姓名、医院名称、***进展等2病原体监测病原体名称、监测时间、监测地点、监测结果、检测方法、样本类型等3预警预报预警类型、预警、级、预警信息、发生时间、预计影响范围、采取措施等4接种管理疫苗名称、接种时间、接种地点、接种人员、剂次、保护效果等5**分析**类型、发生时间、发生地点、病例数量、传播途径、***情况、预防措施等6防控措施防控措施名称、执行时间、执行人员、防控效果、总结等7应急响应应急响应、级、启动时间、启动部门、任务分工、应急措施、应急效果等8消毒管理消毒时间、消毒地点、消毒方法、消毒剂、消毒效果等9物资管理物资名称、领用时间、领用人员、物资数量、使用情况、补充计划等10数据统计统计时间、统计类型、统计指标、统计结果、对比分析等11人员管理人员姓名、职务、联系方式、工作部门、培训记录、奖惩情况等12疫苗管理疫苗名称、入库时间、生产厂家、批号、购置方式、使用情况等疾控中心通过流行病学调查、实验室检测等方式,获取传染病的详细数据,为预警和防控提供科学依据。浙江2026传染病系统APP

通过对传染病病例现住址信息抓取和完善,在GIS地图上可按照病例上报医院位置、病例现住址等维度的热力显示,可查看传染病病例的详细信息。地区分布:根据现住址或者工作(学习)单位等信息,分析病例的空 间聚集性。若多个病例来自于同一家庭、学校、幼托机构、自然村寨、社区或  毗邻村寨/社区由同一医疗卫生单位报告时,需要对病例的空间聚集性进行深入分析。时间分布:根据病例的发病时间和疾病的潜伏期等信息,分析病例的时间聚集性。北京2025传染病系统协作预警规则杜绝迟漏报。

传染病系统架构基于疾控中心提供的四十多种法定传染疾病大数据、行程防疫大数据、电信部门提供的手机信令大数据、通过我们定制手环获取的隔离用户生理特征和轨迹大数据以及通过分布式爬虫获取的**舆情大数据,综合利用移动互联网、大数据、云计算、IoT、AI智能算法、时空数据挖掘、GIS等先进技术,建立**参与的全过程全周期**精细预防与防控体系。本系统自上而下分为四层,分别为:众源数据层、应用支撑层、业务逻辑层和应用表现层。

国家传染病智能监测预警前置软件到目前已经显现三方面成效:‌风险预警能力提升‌:通过多维度数据建模,可识别异常传播趋势,例如对症状不典型或检测结果延迟的病例增设“待确诊”标签,降低漏诊风险。‌‌移动端支持‌:配套APP供防保科医生使用,提供病例审核、风险提示和统计分析功能,覆盖全国1万多家医疗机构。‌‌长期规划‌:下一步将强化系统巡检与数据质量监控,深化跨区域信息共享,构建更高效的公共卫生应急体系。‌‌ 通过及时发布预警信息,公众可以提前做好个人防护,降低风险。

传染病上报系统通过与医院HIS、EMR、PACS、LIS等多个系统互联,自动匹配诊断、医嘱、检验、病历等数据信息,完成对传染病、死亡、食源性疾病的报卡工作。全自动智能填写直报页面,无需人工打字输入。对预警和上报的信息进行审核确认。确认通过的数据再进行网络直报。支持穿透追溯,已可对系统的可靠性。

无需手工操作,减轻劳动强度,提高工作效率。数据准确匹配,增强上报工作的准确性。所有传染病上报自动汇总,方便各级部门统计管理。 网络覆盖全国,确保数据收集的全面性和及时性。北京2025传染病系统协作

预警模型是传染病预警与监测系统的关键技术,通过对历史数据和实时数据的分析,预测发展趋势。浙江2026传染病系统APP

国家前置软件项目由国家顶层规划、统一开发,主体建设单位是国家疾病预防控制局,运行实施单位是中国疾病预防控制中心。马家奇介绍,国家疾控局组织中国疾控中心、部分医疗机构、大学组成技术工作专班和**咨询组,建立**实施团队,指导承担建设任务的单位采用原型迭代的开发方式,“边设计、边验证,边开发、边试点”的并行方式,在6个月时间内实现了较早版本的全国培训部署。马家奇强调,国家前置软件项目不是对2003年建立的传染病网络直报系统的“推倒重来”,而是对该系统的一次重大技术重构,是对系统监测预警能力的提升加强、优化完善,在疾控信息化建设整体规划设计中的地位和作用至关重要。浙江2026传染病系统APP

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。

图片新闻

  • 暂无信息!